Abstract
It is very important to calculate the interference of high voltage direct current (HVDC) grounding current with pipelines accurately and take proper protective measures to ensure energy transmission safety. There is still a lack of systematic research into related prediction methods that consider the nonlinear polarization on the interface between the soil and pipelines. In this paper, a methodology is proposed for calculating the coupling voltage and current on buried pipelines induced by grounding currents that accounts for nonlinear polarization based on the method of moments (MoM) and the finite element method (FEM). The validity of the proposed mathematical model is verified by a scale experiment. The interference distribution characteristics under different parameters are analyzed using the proposed method. The results show that the relationship between the maximum leakage current density and the electrode grounding current satisfy the linear function. The corrosion area becomes more concentrated as the grounding current increases. The corrosion area range increases substantially as the distance increases, whereas the influence degree decreases substantially. Both the maximum leakage current density and corrosion risk area are positively correlated with the soil resistivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.