Abstract

A sensitive electrochemical method was developed for the differential pulse voltammetric determination of rhein at a glassy carbon electrode (GCE) modified with a nanoparticle composite film. In the present paper, multi-wall carbon nanotube (MWNT) was dispersed into dihexadecyl phosphate (DHP) to give a homogeneous suspension. After the solvent evaporation, a uniform film of MWNT-DHP composite film was obtained on the GCE surface. The MWNT-DHP composite film-modified GCE exhibited excellent electrocatalytic behavior toward the redox of rhein. Compared with an irreversible reduction of rhein at the bare GCE, a reversible redox behavior of rhein was observed at the MWNT-DHP composite film-modified GCE and the redox current was also enhanced greatly. Based on this, a cathodic differential pulse voltammetry (DPV) was applied for the determination of rhein. The experimental parameters, which influence the current of rhein, were optimized. Under optimal conditions, the cathodic DPV measurements were performed and a linear response of rhein was obtained in the range from 1.0 × 10 − 8 to 5.0 × 10 − 6 mol L − 1 and with a limit of detect (LOD) of 5.0 × 10 − 9 mol L − 1 . The proposed procedure was successfully applied to assay rhein in real samples with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.