Abstract

The jet formed by the traditional metal liner has a slender shape. The diameter of the jet head is consistent with that of the tail, and the ductility is good. When it is used to penetrate the target, it has a good damage effect. The low-density jet formed by the PTFE/Cu liner, according to the different preparation processes and densities, has different degrees of radial expansion. This phenomenon may lead to the expansion of the jet head during the penetration process, resulting in a damage effect, which is different from the previous jet on the target. In this paper, the numerical simulation of PTFE/Cu liners with different preparation processes penetrating steel targets is carried out, and the effects of different preparation processes and liner density on the penetration characteristics of jets penetrating steel targets are compared and analyzed. The PTFE/Cu shaped charge liner was processed according to different preparation processes, and the jet penetration steel target experiment was carried out, so as to verify and analyze the numerical simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.