Abstract

The established static hydrocyclone structure model was analyzed briefly. By using Reynolds stress turbulent model which was based on the anisotropy in CFD software, the PC-SIMPLEC algorithm was applied to simulate the bi-conical hydrocyclone flow field with a comprehensive in-depth three-dimensional numerical simulation. Pressure distribution and velocity distribution in flow field are obtained. Combined with fluid mechanics and the theory of hydrodynamics, in order to test and verify the accuracy of simulation results. Research finding demonstrates that the hydrocyclone internal differential pressure decreases with increasing large cone angle during a certain range. As a result, increasing large cone angle moderately, it can reduce hydrocyclone internal pressure drop and energy consumption. The tangential velocity increases when the large and small cone angle increases. While cutting down the small cone angle correctly, it makes the prospective forced vortex radius rm reduce and improve separating efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.