Abstract

Integrated multimodal systems is one promising direction to improve human-vehicle interaction. In order to create intelligent human-vehicle interfaces and reduce visual load during secondary tasks, combining a haptic rotary device and a graphic display will provide one practical solution. However, in literature, the proper display position for the haptic rotary device is not fully investigated. In this paper, one experimental infotainment system is studied (including a haptic rotary control device and a graphic display) to evaluate the proper display position. Measurements used include task completion time, reaction to road events, lane/velocity keeping during secondary tasks, and user preference. Three display positions are considered: high mounted position, cluster position, and center stack position. The results show that, with increased on-road and off-road visual loads, the cluster display position can reduce lane position deviation significantly compared to high mounted and center stack positions. In addition, the high mounted and cluster display positions are better toward two different road events, including strong wind gust and extreme deceleration of the lead car.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.