Abstract

The synergistic effects of electron and proton co-irradiation with an energy of 160keV in ultrahigh vacuum environment on T700/cyanate composites was studied through examining the alteration of their interlayer shear strength (ILSS) and mass loss. The surface molecular structure and chemical composition of T700/cyanate composites before and after co-irradiation were studied by IR and XPS, respectively. The results indicate that under low co-irradiation fluence of less than 1.0×1016e(p)/cm2, the cross-linking density of cyanate in the surface layer increased with fluence, resulting in increased ILSS of the composite. However a further increase in fluence caused the ILSS to decrease. Besides surface cross-linking, co-irradiation in high vacuum broke the surface chemical bonds. As a result, the mass loss and formation of a carbon-rich layer at thesurface of T700/cyanate composites took place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.