Abstract

When sonic nozzles of significantly smaller diameter are used as standard flow meters, the critical backpressure ratio is affected by the boundary layer at the nozzle throat. It is known that, as the flow pathway is complicated in actual valves, the critical pressure ratio differs from the ideal value. However, the effect of the boundary layer thickness on choking criteria is still controversial. Choking phenomenon in a sonic nozzle fitted with a straight circular pipe of variable length is investigated numerically and the results are compared with experimental and theoretical ones. The results show that the actual critical pressure ratio is less than the ideal value and it decreases with increase in pipe length. The effect of boundary layer thickness on main flow Mach number is also made clear in this work. In addition, sonic conductance and pressure loss in actual viscous flows computed are compared with the ISO 6358 standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.