Abstract
Soot particles in engine exhaust seriously pollute the atmosphere and endanger human health. For soot oxidation, Pt and Pd precious metal catalysts are widely used and are effective. In this paper, the catalytic characteristics of catalysts with different Pt/Pd mass ratios for soot combustion were studied through X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, the temperature-programmed oxidation reaction, and thermogravimetry. Besides, the adsorption characteristics of soot and O2 on the catalyst surface were explored by density functional theory (DFT) calculations. The research results showed that the activity of catalysts for soot oxidation from strong to weak is Pt/Pd = 10:1, Pt/Pd = 5:1, Pt/Pd = 1:0, and Pt/Pd = 1:1. XPS results showed that the concentration of oxygen vacancies in the catalyst is the highest when the Pt/Pd ratio is 10:1. The specific surface area of the catalyst increases first and then decreases with the increase of Pd content. When the Pt/Pd ratio is 10:1, the specific surface area and pore volume of the catalyst reach the maximum. The following are the DFT calculation results. With the increase of Pd content, the adsorption energy of particles on the catalyst surface decreases first and then increases. When the Pt/Pd ratio is 10:1, the adsorption of C on the catalyst surface is the strongest, and the adsorption of O2 is also strong. In addition, this surface has a strong ability to donate electrons. The theoretical simulation results are consistent with the activity test results. The research results have a guiding significance for optimizing the Pt/Pd ratio and improving the soot oxidation performance of the catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.