Abstract
Storm surge prediction is of great importance to disaster prevention and mitigation. In this study, four optimization algorithms including genetic algorithm (GA), particle swarm optimization (PSO), beetle antenna search (BAS), and beetle swarm optimization (BSO) are used to optimize the back propagation neural network (BPNN), and four optimized BPNNs for storm surge prediction are proposed and applied to Yulin station and Xiuying station at Hainan, China. The optimal model parameter combination is determined by trail-and-error method for the best prediction performance. Comparisons with the single BPNN indicate that storm surge can be efficiently predicted using the optimized BPNNs. BPNN optimized by BSO has the minimum prediction error, and BPNN optimized by BAS has the minimum time cost to reduce unit prediction error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.