Abstract

Using graphene oxide as substrate and stabilizer for the silver nanoparticles, silver nanoparticles-graphene oxide (Ag NPs/GO) composites with different Ag loading were synthesized through a facile solution-phase method. During the synthesis process, AgNO3on GO matrix was directly reduced by NaBH4. The structure characterization was studied through X-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscope (HRTEM), ultraviolet-visible spectroscopy (UV-Vis), and selected area electron diffraction (SAED). The results show that Ag nanoparticles (Ag NPs) with the sizes ranging from 5 to 20 nm are highly dispersed on the surfaces of GO sheets. The shape and size of the Ag NPs are decided by the volume of initial AgNO3solution added in the GO. The antibacterial activities of Ag NPs/GO nanocomposites were investigated and the result shows that all the produced composites exhibit good antibacterial activities against Gram-negative (G−) bacterial strainEscherichia coli(E. coli) and Gram-positive (G+) strainStaphylococcus aureus(S. aureus). Moreover, the antibacterial activities of Ag NPs/GO nanocomposites gradually increased with the increasing of volume of initial AgNO3solution added in the GO and this improvement of the antibacterial activities results from the combined action of size effect and concentration effect of Ag NPs in Ag NPs/GO nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.