Abstract

The residual stresses of the thin-walled injection molding are investigated in this study. It was realized that the behavior of residual stresses in injection molding parts was affected by different process conditions such as melt temperature, mold temperature, packing pressure and filling time. The layer removal method was used to measure the residual stresses at a thin-walled test sample by a milling machine. This simple method was demonstrated to be adequate for a thin-walled part. Moldings under different conditions were investigated to study the effects of the process conditions on the residual stresses of a thin-walled product using the elastic and viscoelastic models. The mold temperature was found to affect the size of the core region and residual stress on the surface layer of a thin-walled part in our studied range. The packing pressure was insensitive to the residual stresses in the studied high-pressure range. The residual stresses predicted by the viscoelastic model are about the same level and trend as compared to the experimental measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.