Abstract

To systematically investigate the friction and wear behavior of TiC/Ni composites under microscopic, the molecular dynamics (MD) method was used to simulate nano-friction on the TiC/Ni composite. Mechanical properties, abrasion depth, wear rates, temperature change of the material during friction, the microscopic deformation behavior, and the evolution of nickel-based titanium carbide microstructure at high-speed friction have been systematically studied. It was found that the variation of tangential and normal forces is related to the relative position of the grinding ball and the TiC phase, when the grinding ball is located above the TiC phase, large fluctuations in the frictional force occur and extreme value of normal force appears, shallow abrasion depth and low wear rate. During the friction process, there is a high-stress area between the grinding ball and the TiC phase, generating a large number of dislocations. The presence of the TiC phase hinders the development and extension of defects, resulting in a significant increase in temperature. At the same time, dislocation entanglement occurs, which improves the wear resistance of the workpiece. In addition, it was also found that the internal atomic motion guided by the carbonized phase was related to the position of the grinding ball relative to the reinforced phase, with the reinforced phase presenting a tendency to rotate in different directions when the grinding ball was in different positions relative to the reinforced phase, which in turn affected the deformation of the whole workpiece.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.