Abstract

During service, coefficient of thermal expansion (CTE) mismatch between different materials in electronic devices can lead to stress and strain concentration, and the creep and fatigue damage will accumulate, leading to final failure of solder joints. The main constituent of Pb-free solder joint is β-Sn, which is body-centered tetragonal metal. There is big difference in CTE and elastic modulus along different directions of β-Sn, showing strong anisotropy. Therefore, solder joints with different orientations show quite different thermo-mechanical responses. In this study, ball grid array (BGA) assemblies were subjected to thermal cycling, and the orientation of the solder joints was characterized by EBSD to track the orientation evolution in different solder joints. Surface Evolver was adopted to simulate the three-dimensional shape of the solder joint. Based on the shape and grain structure of real lead-free solder joints, the thermal stress and strain distribution in BGA assemblies under thermal loading were computed. Sub-model based on grain numbers and orientation distribution is solved to get the strain distribution of the three typical solder joints. The experimental and simulated results show that grain orientation significantly influences the solder joint reliability and failure mode. For single-grained solder joints, stress and strain concentration is located in the solder bulk near the interface, where recrystallization accompanied with initiation and propagation of cracks. However, for

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.