Abstract

This paper provides the theory, mathematics analysis and experiments in support of the Infrared thermal-wave inspection on the subsurface defects in a solid using linear frequency modulated light excitation (LFMTWI). The specimen is heated by the heat flux of linear frequency modulation for launching thermal-wave into the sample in a desired range of frequency. The more thermal wave responses characters are obtained, and the IR thermal-wave imaging shows much more advantages for subsurface defects detection. The simulation and experimental results from steel sample are presented in support of this technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.