Abstract

This study aims to develop a novel fuzzy fractional model for the human liver that incorporates the ABC fractional differentiability, also known as ABC gH-differentiability, based on the generalized Hukuhara derivative. In addition, a novel fuzzy double parametric q-homotopy analysis method with a generalized transform and ABC gH-differentiability is used to deal with the fuzzy mathematical model and examine its convergence analysis. The stability of the unique equilibrium point for the fuzzy fractional human liver model and the existence of a unique solution in the proposed model are investigated using the Arzela-Ascoli theorem and Schauder's fixed-point theory. Some numerical experiments are conducted to visualize better results and test the proposed method's efficacy. The results of the q-HAShTM employing the presented approaches coincide with most of the clinical data, providing it more precise and superior to the generalized Mittag-Leffler function method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.