Abstract

Feature selection and weighting is one of the key problem in text categorization. The chief obstacles to feature selection are noise and sparseness. This paper presents an approach of Chinese text feature selection and weighting based on semantic statistics. First, we use synonymous concepts to extract feature values in text based on Thesaurus which names TongYiCi CiLin. Then, we introduce a new weight function based on term frequency and entropy, which adjusts the effect of the feature term in the classifier according to the feature term’s strength. Experiments show that our method is much better than kinds of traditional feature selection methods and it improve the performance of text categorization systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.