Abstract

Iron release from pipe scale is an important reason for water quality deterioration in drinking water distribution systems (DWDS) globally. Disruption of pipe scale, release and transformation of iron compounds are hot topics in the field of water supply. The aim of this study is to determine whether and how ferric components in pipe scale be reduced under anoxic condition. In this study, new investigation approaches were applied, which include simplifying the complex scale into electrode pairs, developing novel simulating reactors and conducting tailored electrochemical assays. A galvanic cell reactor with anode of metallic iron (Fe0) and various cathode made of certain iron oxide (FeOx) was firstly developed to simulate the complex niche and components of pipe scale. Electrochemical methods were used to study the reduction characteristics of scale. The results proved that reduction of iron oxide scale did occur under anoxic condition. Electromotive forces between various electrodes match the Nernst Equation quite well. As main components in pipe scale, lepidocrocite (γ-FeOOH) was found to be the most reducible iron oxide but at low rate, while goethite (α-FeOOH) has weak reducibility but can be quickly reduced. As a result of electrochemical reactions, goethite in pipe scale was transformed into magnetite (Fe3O4). By these means, electrochemical reaction mechanisms of pipe scale disruption were revealed, which is helpful to restrain pipe corrosion and water deterioration in DWDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.