Abstract

In order to study the conductive and microwave absorption performance of multi-dimensional multiphase filler conductive foam composites, carbon nanotubes (CNTs)/carbon black (CB)/polymethyl methacrylate (PMMA) nanocomposites with different porosity were fabricated via supercritical carbon dioxide (ScCO2) one-step physical constraint foaming technology. The effects of filler component and porosity on the conductivity and absorbing properties of CNTs/PMMA/CB composite foam were studied. The Monte-Carlo method was used to study the percolation of composites and the effect of introduced microcells on the conductive network of multi-dimensional fillers. The results revealed that the volume conductivity of CNTs(3 vol%)/PMMA composites increased from 0.88 S m−1 to 3.31 S m−1 after the addition of 1 vol% CB. CNTs and CB had obvious synergistic effect on improving the conductivity of the composites, and the microwave absorption efficiency rose from 12.6 dB to 17.2 dB. With the increase of porosity, the electromagnetic wave absorption peak of CNTs/CB/PMMA composite foam moved to low frequency, while the conductivity showed a first rise and then a decline. The simulated percolation probability obtained by representative volume element (RVE) with different porosity also showed a similar trend, which turned out that with the increase of porosity, the effect of microcells on the convertion of conductive network construction from promoting to inhibiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.