Abstract

To investigate effects of tip geometry on AFM nanoscratching process, an experimental calibration method measuring three-dimensional (3D) scratching forces based on the cantilever deflection is presented. On the surface of single crystal copper and silicon, nanoscratching tests are carried out using a pyramidal diamond tip. Effects of tip geometry (including the hemisphere of the tip and three sides of the pyramid) on scratching forces, friction coefficient and specific energy are studied. Results show that the scratching depth of about 10–15 nm is a transition point in scratching tests for the diamond tip used in this paper. Below this value, the hemisphere is dominant, whereas at the scratching depth of larger than this value, three sides of the tip play the key role in scratching tests. Friction coefficients are different at different tip orientations influenced by the contact area between the tip and the sample and attack angle at the scratching depth of greater than 10–15 nm. Specific energy is not sensitive to tip geometry because it reveals the energy required for removal of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.