Abstract

Due to uncertainty in both demand and supply, material shortages are difficult to completely avoid. To reduce the effect on the schedule and cost performance of construction projects, managers should allocate limited material among activities effectively. Motivated by observations of construction practices, this paper investigates the integration of supply logistics and site logistics issues and develops a framework to model inventory replenishment and allocation decisions jointly. On the basis of the activity feature information (e.g., schedule, cost, and demand), we propose five allocation policies to support the integrated inventory management process: schedule-based, cost-based, demand-based, schedule-cost-based, and schedule-demand-based policies. Meanwhile, a genetic algorithm (GA)-based simulation optimization method is utilized to solve the integrated inventory model and find the optimal inventory level under a given allocation policy. Based on a large set of fictitious project networks with different path difference (PD), a computational analysis is conducted to make detailed interpolicy comparisons. It is shown that for a project network with a small (or large) PD value, the schedule-based (or schedule-cost-based) policy is the most appropriate choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.