Abstract

3D printing techniques and materials have become widely available in the last couple of decades and remains an important topic of research as the equipments and supplements gets chipper. This study aims to evaluate the attenuation behaviour of several commercially available 3D printing filaments (ABS and PLA-based filaments and other polymers blends) over standard X-ray beams ranging from ~30 keV - to ~50 keV and comparing the experimental results with theoretical data of Cortical Bone, Soft Tissue and PMMA. It was used the transmission method to obtain experimental attenuation coefficients to all materials. HVL for the materials were also calculated. Results show that PLA-based printing filaments mixed with metals (Al, BRASS and Cu) has higher attenuation than pure PLA. Comparing the experimental data with theoretical cross section of Soft Tissue, Cortical Bone and PMMA, it was possible to observe that with the increase of beam energy, ABS-based and other blends’ attenuation behaviour agree with PMMA/Soft tissue. None of the studied materials showed agreement of attenuation with Cortical Bone. Some variations of PLA (SILK, Black and Bone) and some of the other blends of PETG and TPU showed good agreement with Soft Tissue/PMMA since about 30 keV and it can be concluded that these filaments can be used as substitute of PMMA for mimetizing soft tissue in 3D printed phantoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.