Abstract

Atmospheric correction is a necessary step for deriving surface geophysical parameters. The aim of this paper is to study the atmospheric correction of Landsat-8 imageries released by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. A look-up table (LUT)-based atmospheric correction method on Landsat-8 OLI is proposed. The LUT is generated with 6S model with inputs including total atmospheric water vapor content, ozone, and aerosol optical thickness (AOT) from MODIS atmospheric level 2 products. The conventional method to build up the atmospheric parameter LUT usually only takes part of the factors (e.g., AOT) into consideration, whereas it is not applicable in the atmospheric correction using per pixel of MODIS products as input atmospheric parameters. Thus, a five-dimensional LUT, which considers most input parameters, is built up and has high universality for the Landsat-8 OLI sensor. Finally, spectral analysis, comparison to U.S. Geological Survey-released surface reflectance (SR) products, and field observations are used to validate the quality of the model-computed SR. The validation results indicate that the proposed method can effectively generate accurate and reliable SR results, although there is an overcorrected problem in the costal blue region when the AOT value is very high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.