Abstract
Precision manipulation of various liquids is essential in many fields such as various thermal, optical, and medical applications. This paper proposes an effective noncontact microdroplet separation method that is based on the action of corona discharge. A blade-plate electrode is constructed to generate an ionic wind, thereby enabling the droplet to be separated according to the shape of the blade electrode. Line, curve, S-shape, and parallel separation of the droplet can be realized in the experiment setup. Furthermore, experiment parameters, including the driving voltage, cutting speed, the distance of the upper and lower electrodes, cutting depth, etc., are discussed. Experimental results show that the proposed method is feasible and effective and can be used in application scenarios that require precise manipulation of droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.