Abstract
Dilute acid hydrolysis (DAH) and auto-hydrolysis (AU) have demonstrated to be optimal pre-treatments for the generation of biofuels from wood. Recent studies have highlighted the importance of ensuring the accessibility of cellulose enzymes during the enzymatic hydrolysis (EH) of pre-treated materials. In this work, the microscopic and nanoscopic structures of Eucalyptus globulus samples pre-treated by AU and DAH were evaluated by different techniques to understand the effect of the ultrastructure of samples on the enzymatic conversion and cellulose accessibility for bioethanol production. Microscopic techniques revealed changes in the physical characteristics of pre-treated fibers, coalescence at microscopic level, and differences in the chemical distribution of lignocellulosic components depending on the severity and type of pre-treatment. The atomic force microscopy-based nanoscopic study of samples showed differences in the effect of the pre-treatments on the ultrastructure of samples, with DAH pre-treatment producing major changes in the secondary cell wall with respect to AU samples at comparable severities, and a positive effect of the DAH ultrastructure changes to increase the EH yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.