Abstract

Complex 1H MAS NMR spectra of hydroxylated MgO powders have been assigned by combining DFT embedded cluster calculations and experiments using single pulse, Hahn-echo, and 2D NOESY like sequences. Chemical shifts calculations suggest the qualitative classification of protons into three main categories, characterized by different chemical shifts ranges. The highest chemical shifts (δH > −0.7 ppm) are proposed to be characteristic of hydrogen-bond donor OH groups (threefold O3C−H, fourfold O4C−H, and fivefold O5C−H localized on corners, edges, and in valleys respectively). The lowest chemical shifts (δH < −0.7 ppm) are associated to isolated and hydrogen-bond acceptor twofold O2C−H and onefold O1C−H, whereas the central signal at δH = −0.7 ppm would correspond to isolated O3C−H and O4C−H on kinks and divacancies. These assignments can be refined by considering dipolar interactions between vicinal protons observed thanks to the NOESY like sequence. It is thus shown that some hydrogen bond donor OH groups are characterized by a lower chemical shift than expected from calculations and also contribute to the central signal. Calculated thermal stabilities and chemical shifts suggest that these protons correspond to O4C−H on monatomic steps. The final assignment is fully consistent with previous experimental results on CD3OH adsorption and quantitative analysis of the evolution of spectra with temperature. This study illustrates the synergism between experiments and theory, by comparison with the results obtained by either one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.