Abstract

Abstract The composite wall with encased steel braces (ESB wall) is a novel type of steel–concrete composite wall that consists of a steel braced frame embedded in reinforced concrete. This arrangement is supposed to enhance the seismic performance of the wall, as the steel columns encased in the boundary elements can increase the flexural strength of the wall and the steel braces encased in the web can increase the shear strength. ESB walls have seen use in super tall building structures constructed in regions of high seismicity. The ESB walls are commonly used on stories where the shear force demand is very high. Currently, no design guidelines exist for the design of ESB Walls in the Eurocode. More research is required before a distinct set of guidelines can be prescribed for the design of ESB Walls. The present research will investigate behavior of composite walls with encased steel braces (ESB walls). Time history analysis will be performed to examine the shear strength and stiffness of the ESB walls. In this study, two frames with three floors and five floors will be modeled in ABAQUS software. Then the X- shaped braces and inverted V brace is added to frames. Later, reinforced concrete shear wall will be added to braced frames, so the steel braces encased in the reinforced concrete shear wall. Time history analysis, on the braced frames will be done Compare and note with each other. The results of the study are in good agreement with those of previous studies. However, none of these studies examined the effect of using V- and X-shaped struts and shear walls simultaneously, nor did they examine which struts reinforce the structures more strongly against earthquake vibrations. This has led the study to examine the effect of these reinforcements under various earthquakes. In future studies, reinforced concrete structures can also be used in addition to steel structures, and the results can be compared. In addition, these braces can also be used in other parts of the building. To meet this objective, one can use the very important data provided in this thesis, and ultimately better and more accurate results can be extracted using this approach. The main aim of this thesis is to study the effect of increasing the number of floors on how to extend the stress on the building structure. To this end, the number of floors increased from three to five. Therefore, it can be concluded that an increase in the number of floors also more than 5 storey causes stress values, but these modes are quite consistent with the three- and five-storey buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call