Abstract

Waterborne epoxy resin (WER) emulsified asphalt (WEREA) has the advantages of high viscosity and strength of epoxy asphalt, as well as a simple construction process, so it is used widely in asphalt pavement maintenance and repair projects. This paper investigated the comprehensive properties, the microstructure, the modification mechanism, and the strength formation mechanism of WEREA. The results of bond strength tests, adhesion tests between emulsified asphalt and coarse aggregate, conventional performance tests, and multistress creep recovery (MSCR) tests showed that with the increase of WER content, the adhesive properties and creep recovery properties at high temperature of the WEREA gradually improved, and gradually became the properties of brittle materials. When the WER content was 15%, the irrecoverable creep compliance of the WEREA stabilized and it met heavy traffic demand. In addition, fluorescence microscopy (FM) and scanning electron microscopy (SEM) showed that WER changed from having an island structure to having an epoxy skeleton structure in the WEREA. The results of Fourier-transform infrared (FTIR) testing showed that during the modification of the emulsified asphalt by the WER, no new substances were generated, which indicated that the sample possessed the mechanism of intermolecular physical blending. The test results were used to analyze the strength formation process of WEREA, which provides theoretical guidance for other researchers to study WEREA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.