Abstract

Although several monomeric GTP-binding proteins have been found in myelin, the signaling pathways in which they operate are not known. To define these signaling pathways we searched for specific target proteins that interact with the myelin monomeric GTP-binding proteins. A blot overlay approach was used. Bovine white matter homogenate, myelin, and oligodendrocyte proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto nitrocellulose membranes. The presence of proteins that interact with the myelin GTP-binding proteins was explored by incubating those blots with an enriched fraction of 22- and 25-kDa myelin GTP-binding proteins labeled with radioactive guanine nucleotides. When the GTP-binding proteins were in the inactive state (GDP-bound) they interacted with 28-, 47-, and 58-kDa oligodendrocyte polypeptides. Only the 28-kDa protein was present in myelin. In the active state (GTP-bound), they interacted only with a 47-kDa protein in myelin but with 31-, 38-, 47-, 58-, 60-, 68-, and 71-kDa proteins in oligodendrocytes and total homogenate. Under these experimental conditions the 28-kDa protein did not interact with the GTP-binding proteins. The fact that the myelin GTP-binding proteins in the active state formed complexes with a different set of proteins than when in the inactive state is a strong indication that these proteins are effector proteins. With the exception of the 31- and 38-kDa proteins that were detected only in the cytoplasmic fraction, these polypeptides were detected in the cytosolic fraction and total membrane fraction. The 25-kDa GTP-binding protein was present in all the complexes. Immunoblot analysis indicated that the 28-kDa polypeptide is RhoGDI, an effector protein that is known to regulate the activation and movement of several GTP-binding proteins between different cellular compartments. Thus, this study opens the way to identify the macromolecules participating in the myelin signaling pathway involving monomeric GTP-binding proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.