Abstract
Abstract In this article, we combine sums of squares (SOS) and sums of nonnegative circuit (SONC) forms, two independent nonnegativity certificates for real homogeneous polynomials. We consider the convex cone SOS+SONC of forms that decompose into a sum of an SOS and a SONC form and study it from a geometric point of view. We show that the SOS+SONC cone is proper and neither closed under multiplication nor under linear transformation of variables. Moreover, we present an alternative proof of an analog of Hilbert’s 1888 Theorem for the SOS+SONC cone and prove that in the non-Hilbert cases it provides a proper superset of the union of the SOS and SONC cones. This follows by exploiting a new necessary condition for membership in the SONC cone.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have