Abstract
This work reports evidence for the existence of coherent structures in steady-state shear-flow driven plasmas in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. The measurements are performed with the vorticity probe (VP), a probe that directly measures the plasma vorticity associated with the E×B shear flow by means of a method that is both simpler and more accurate than the methods used in neutral fluids. Because the rate of change of vorticity is a key quantity in nonlinear models, as in the Hasegawa-Mima equation, its direct measurement is critical for verification purposes. The physical origin of the rate of change of plasma vorticity from E×B flow is the divergence of the ion polarization current. Vortex coherent structures occur when the vorticity is a nonlinear function of the stream function. Statistical properties of vorticity are reported and shown to be consistent with the types of coherent structures created by the Kelvin-Helmholtz instability. Comparisons of the measured vortex characteristics with the results from nonlinear simulations of the systems is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.