Abstract

Waste-heat driven refrigeration technology represents a promising alternative for food preservation on-board, that could help reducing pollutant emissions and, at the same time, limiting fuel consumption. Aim of the present work is the assessment of possible benefits arising from the use of thermally driven systems, with focus on two technologies: absorption and adsorption. A dynamic simulation of the whole waste heat recovery system and the sorption refrigerators has been performed. For the modelling of the thermally driven chillers, experimental data from two prototypes have been employed. The results show that, for a cooling load typical of the Italian fishing fleet, fuel savings up to 1600 kg/y can be achieved, corresponding to 3 ton/y of avoided CO2 emissions. Moreover, for bigger vessels with 10 kW cooling load needed, up to 7 times higher fuel savings can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.