Abstract
In order to reduce the effect of the spectral line self-absorption on the analysis result in the laser induced plasma and enhance the qualities of spectrum, the spectral information was recorded by the spectral analysis system consisting of a modular multifunctional grating spectrometer and a CCD detector etc., and the electron temperature and electron density of the plasma were measured with the spectroscopic methods. A plane mirror device was used to constraint the laser plasma, and a reasonable explanation was got through comparing the linear evolution under different experimental conditions and measuring the temperature, electronic density and sample evaporation. The result shows that when an appropriate plane mirror device was used to constraint the laser plasma, the axial temperature of the plasma increased and the radial distribution of the plasma becomes uniform; the electron density increased dramatically; however, obviously sample evaporation decreased, which may be the reasons for being able to effectively reduce the level of self-absorption spectral lines. Therefore, the plane mirror device could reduce the self-absorption effect in the laser-induced plasma. This makes it possible to choose a sensitive line that acts as analysis line in the quantitative analysis of the major elements. In other words, this promotes the measurement precision in the laser-induced break-down spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.