Abstract

The East River in South China plays a key role in the socio-economic development in the region and surrounding areas. Adequate understanding of the hydrologic response to land use change is crucial to develop sustainable water resources management strategies in the region. The present study makes an attempt to evaluate the possible impacts of land use change on hydrologic response using a numerical model and corresponding available vegetation datasets. The variable infiltration capacity model is applied to simulate runoff responses to several land use scenarios within the basin (e.g., afforestation, deforestation, and reduction in farmland area) for the period 1952–2000. The results indicate that annual runoff is reduced by 3.5 % (32.3 mm) when 25 % of the current grassland area (including grasslands and wooded grasslands, with 46.8 % of total vegetation cover) is converted to forestland. Afforestation results in reduction in the monthly flow volume, peak flow, and low flow, but with significantly greater reduction in low flow for the basin. The simulated annual runoff increases by about 1.4 % (12.6 mm) in the deforestation scenario by changing forestland (including deciduous broadleaf, evergreen needleleaf, and broadleaf, with 15.6 % of total vegetation cover) to grassland area. Increase in seasonal runoff occurs mainly in autumn for converting cropland to bare soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.