Abstract
There is a significant interest in developing environmentally responsive or stimuli-responsive smart materials. In this paper, the thermo-responsiveness of cotton fabrics treated by helium atmospheric pressure plasma was investigated. Thermo-responsive cotton fabrics were prepared by grafting poly(N-isopropyl acrylamide) (PNIPAM) on their surfaces using atmospheric plasma. The thermoregulation properties under different environmental temperatures have been evaluated via thermal imaging analysis, comfort test and SEM. The grafting of PNIPAM on cotton fabrics was verified via ATR-FTIR, XPS, and ToF-SIMS. The analysis results indicate that cotton fabrics with PNIPAM treatments possess thermo-responsiveness when wetted. It was found that fabrics with plasma-initiated PNIPAM treatments have higher heat transfer coefficient above 32 °C and lower heat transfer coefficient below 32 °C than untreated fabrics. The heat transfer coefficient of a PNIPAM grafted cotton has a 10% difference from that of an untreated cotton at temperatures above and below LCST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.