Abstract

Atherosclerosis is a disease in which plaque builds up inside arteries. It is also considered as one of the most serious and common forms of cardiovascular disease which can lead to heart attack and stroke. In the current research, finite element method is used to anticipate plaque vulnerability based on peak plaque stress using human samples. A total of 23 healthy and atherosclerotic human coronary arteries, including 14 healthy and 9 atherosclerotic are removed within 5 h postmortem. The samples are mounted on a uniaxial tensile test machine and the obtained mechanical properties are used in finite element models. The results, including the Mooney–Rivlin hyperelastic constants of the samples as well as peak plaque stresses, are computed. It is demonstrated that the atherosclerotic human coronary arteries have significantly (p < 0.05) higher stiffness compared to healthy ones. The hypocellular plaque, in addition, has the highest stress values compared to the cellular and calcified ones and, consequently, is so prone to rupture. The calcified plaque type, nevertheless, has the lowest stress values and, remains stable. The results of this study can be used in the plaque vulnerability prediction and could have clinical implications for interventions and surgeries, such as balloon angioplasty, bypass and stenting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.