Abstract

Sphericity is an important indicator of particle flow properties in rotary granulation. Here, a dynamic simulation approach is proposed to study the formation of particle sphericity during agglomeration by investigating both the orbit and attitude of non-spherical particles in a rotary drum. First, geometric criteria are presented to substitute a dual-sphere particle model for the commonly encountered ellipsoidal particle model assuming the long radius of the dual-sphere particle is equal to that of the ellipsoidal particle. Next, a discrete element method is applied to calculate the positions and orientations of dual-sphere particles during granulation. The relationship between shape and attitude in the dual-sphere model is then analyzed by comparing the obtained orientation angle–oblateness curves. A conclusion can be drawn that the particle orientation angle decreases with increasing particle oblateness within a certain range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.