Abstract

We investigate noise-induced transitions in non-gradient systems when complex invariant sets emerge. Our example is the Lorenz system in three representative Rayleigh number regimes. It is found that before the homoclinic explosion bifurcation, the only transition state is the saddle point, and the transition is similar to that in gradient systems. However, when the chaotic invariant set emerges, an unstable limit cycle continues from the homoclinic trajectory. This orbit, which is embedded in a local tube-like manifold around the initial stable stationary point as a relative attractor, plays the role of the most probable exit set in the transition process. This example demonstrates how limit cycles, the next simplest invariant set beyond fixed points, can be involved in the transition process in smooth dynamical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.