Abstract

Donepezil is a potent acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease. Although acetylcholinesterase inhibitors are thought to be symptomatic treatment of Alzheimer's disease, it is not clear whether they are effective against progressive degeneration of neuronal cells. In this study, we investigated the neuroprotective effects of donepezil against ischemic damage, N-methyl- d-aspartate (NMDA) excitotoxicity, and amyloid-beta (Aβ) toxicity using rat brain primary cultured neurons. Lactate dehydrogenase (LDH) released into the culture medium was measured as a marker of neuronal cell damage. As an ischemic damage model, we used oxygen–glucose deprivation in rat cerebral cortex primary cultured neurons. Pretreatment with donepezil (0.1, 1 and 10 μM) significantly decreased LDH release in a concentration-dependent manner. However, other acetylcholinesterase inhibitors (galantamine, tacrine and rivastigmine) did not significantly decrease LDH release. In a NMDA excitotoxicity model, pretreatment with donepezil (0.1, 1 and 10 μM) decreased the LDH release in a concentration-dependent manner. In binding assay for glutamate receptors, donepezil at 100 μM only slightly inhibited binding to the glycine and polyamine sites on NMDA receptor complex. We further examined the effect of donepezil on Aβ (1–40)- and Aβ (1–42)-induced toxicity in primary cultures of rat septal neurons. Pretreatment with donepezil (0.1, 1 and 10 μM) significantly decreased LDH release induced by Aβs in a concentration-dependent manner. However, other acetylcholinesterase inhibitors (galantamine and tacrine) and NMDA receptor antagonists (memantine and dizocilpine (MK801)) did not significantly decrease LDH release. These results demonstrate that donepezil has protective effects against ischemic damage, glutamate excitotoxicity and Aβ toxicity to rat primary cultured neurons and these effects are not dependent on acetylcholinesterase inhibition and antagonism of NMDA receptors. Thus, donepezil is expected to have a protective effect against progressive degeneration of brain neuronal cells in ischemic cerebrovascular disease and Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.