Abstract

The influences of 4 wt% bismuth addition and room temperature strain on microstructure and mechanical properties in tin alloys were investigated in this study. Commercially pure tin and Sn-4%Bi alloys were fabricated by permanent mold gravity casting. The samples were then subjected to forging process at room temperature. As-cast microstructures were compared with 0.25 and 0.5 strained samples. Differential Scanning Calorimetry (DSC) was used to confirm the effect of bismuth on undercooling. The recrystallization and grain growth processes were confirmed by grain size distribution and misorientation study using Electron Backscattered Diffraction (EBSD). Furthermore, position and morphology of the bismuth precipitates were investigated by using Field Emission Scanning Electron Microscope (FESEM). X-ray Photoelectron Spectroscopy (XPS) revealed that tin oxide was the main species found on the surface of these alloys. There was no evidence of bismuth oxide on the surface. Furthermore, the Hall-Petch hardness approximation analysis revealed that there were other influences, which increased the hardness beyond the grain refinement effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.