Abstract
Metal matrix composites offer a substantial surety to meet the present and future demands spanning from automobiles to aerospace. Hybrid metal matrix composites are a new choice of materials involving several advantages over the single reinforcement. In this present study, three specimens possessing aluminium 7075 reinforced with particulates of silicon carbide (5, 10, 15% weight percentage) and alumina (5% weight percentage) were developed using stir casting. The purpose of the study was to investigate the effect of reinforcement particles of silicon carbide on the machinability of hybrid metal matrix composites. These materials are engineered to match the requirements of optimal output responses such as low surface roughness, less tool wear, a less cutting force with the high rate of material removal under a set of practical machining constraints. Multi-objective parametric optimization using genetic algorithm obtained optimal cutting responses. The spindle speed, feed rate, depth of cut and weight percentages of SiC were selected as the influencing parameters for meeting the output responses in end milling operation. Based on the Box–Behnken design in response surface methodology, 27 experimental runs were conducted and nonlinear regression models were developed to predict the objective function. The adequacy of the model was checked through ANOVA and was found to be significant. The optimum settings of the parameters were found using multi-objective genetic algorithm. The predicted optimal settings were verified through confirmatory experiments, and the results validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.