Abstract

Lysozyme is an important and widespread component of the innate immune response that constitutes the first line of defense against bacterial pathogens. The bactericidal effect of this enzyme relies on its capacity to hydrolyze the bacterial cell wall and also on a nonenzymatic mechanism involving its cationic antimicrobial peptide (CAMP) properties, which leads to membrane permeabilization. In this paper, we report our findings on the lysozyme resistance ability of Rhodococcus equi, a pulmonary pathogen of young foals and, more recently, of immunocompromised patients, whose pathogenic capacity is conferred by a large virulence plasmid. Our results show that (i) R. equi can be considered to be moderately resistant to lysozyme, (ii) the activity of lysozyme largely depends on its muramidase action rather than on its CAMP activity, and (iii) the virulence plasmid confers part of its lysozyme resistance capacity to R. equi. This study is the first one to demonstrate the influence of the virulence plasmid on the stress resistance capacity of R. equi and improves our understanding of the mechanisms enabling R. equi to resist the host defenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.