Abstract
Biomimetic nanostructures with bactericidal performance have become the research focus in constructing sterilization surfaces, but the mechano-bactericidal mechanism is still not fully understood, especially for the hierarchical nanostructure arrays with different heights. Herein, the interaction between Escherichia coli cells and nanostructure arrays was simulated by finite element, and the initial rupture points, i.e., critical action sites, of bacterial cells and the effects of nanostructure geometries on the cell rupture speed were analyzed based on the mechano-response of Escherichia coli cells on flat (identical heights) and hierarchical nanostructure arrays. The critical action sites of bacterial cells on nanostructure arrays are all at the three-phase junction zone of cell-liquid-nanostructure, but they are slightly shifted by the height difference ΔH of nanostructures on hierarchical nanopillar (NP)/nanosheet (NS) arrays, where the NP is higher than the NS. When ΔH < 20 nm, the site nears the NS corners, and when ΔH ≥ 20 nm, the site is consistent with that of the NP/NP array, i.e., the site locates at the three-phase junction zone of cell-liquid-high NP. In addition, except for decreasing the NP diameter, the NS thickness/width, or properly increasing the nanostructure spacing, the cell rupture can be accelerated via increasing the ΔH of nanostructures. ΔH = 40 nm is distinguished as the boundary for the effect of nanostructure ΔH on the cell rupture speed. When ΔH < 40 nm, the cell rupture speed rapidly increases as the ΔH increases; when ΔH ≥ 40 nm, the cell rupture speed reaches the maximum value and remains stable. This study provides a new strategy on how to design high-efficiency bactericidal surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.