Abstract

Influence of external magnetic source on ferrofluid convection in an enclosure with elliptic hot cylinder is studied. Governing formulae are first made dimensionless form along with the associated boundary conditions and then solved by powerful numerical method namely CVFEM. Influences of Rayleigh and Hartmann numbers and Fe3O4 volume fraction on hydrothermal behavior are presented. Results indicated that temperature gradient is an enhancing function of volume fraction of Fe3O4 and Rayleigh number but it is a reducing function of Lorentz forces. Lorentz forces cause the nanofluid velocity to reduce and augment the thermal boundary layer thickness. The role of effective parameters is illustrated through graphs and tables. Comparison of the present work is also made with the existing literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.