Abstract

The potential use of Pleurotus spent mushroom compost as a biosorbent for Fe (II) removal from aqueous solutions was investigated. The experiments were conducted in a fixed-bed column to investigate the influence of various parameters such as flow rate, bed depth and initial concentration on the biosorption of Fe (II). The results of breakthrough time, exhaustion time as well as the Fe (II) uptake and percentage of removal are highly influenced by the flow rate, bed depth and the initial Fe (II) concentration. The results demonstrated that the breakthrough time and exhaustion time increased with decreases in flow rate and initial Fe (II) concentration. Conversely, the breakthrough and exhaustion time decreased as the bed depth decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.