Abstract

The hot compressive behaviors of a typical Ni-based superalloy are investigated by hot compression tests under the strain rates of 0.001–1s−1 and deformation temperatures of 920–1040°C. It is found that the dynamic recrystallization is the main softening mechanism for the studied superalloy during hot deformation. The deformation temperature and strain rate have a significant influence on the dynamically recrystallized grain size. Based on the experimental results, an inverse power law equation is established to describe the relationship between the dynamically recrystallized grain size and the steady-state flow stress. A cellular automaton model with probabilistic state switches is established to simulate the dynamic recrystallization behaviors of the studied superalloy. The flow stress and the dynamically recrystallized grain size can be well predicted by the established model. Then, the dynamic recrystallization kinetic and the evolutions of the average grain size and grain boundary fraction are studied based on the simulated results. The simulated results show that the dynamic recrystallization is initially heterogeneous, and gradually becomes homogeneous with the increase of the volume fraction of dynamic recrystallization. With the increase of strain, the average grain size decreases, while the grain boundary fraction increases. Furthermore, the average grain size and the grain boundary fraction remain relatively constant when the deformation is under a steady state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.