Abstract

The effects of rapid thermal annealing on deep level defects in the undoped n-type InP with Ru as Schottky contact metal have been characterized using deep level transient spectroscopy (DLTS). It is observed that the as-deposited sample exhibit two deep levels with activation energies of 0.66 and 0.89 eV. For the samples annealed at 300 °C and 400 °C, a deep level is identified with activation energies 0.89 and 0.70 eV, respectively below the conduction band. When the sample is annealed at 500 °C, three deep levels are observed with activation energies 0.25, 0.32 and 0.66 eV. Annealing of the sample at 300 °C, orders the lattice of as-grown material by suppressing the defect 0.66 eV (A1) which is found in the as-deposited sample. The trap concentration of the 0.89 eV deep levels is found to be increased with annealing temperature. The deep level 0.32 eV may be due to the lattice defect by thermal damage during rapid thermal annealing process such as vacancies, interstitials and its complexes, indicating the damage of the sample after annealing at 500 °C. The defects observed in all the samples are possibly due to the creation of phosphorous vacancy or phosphorous antisite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.