Abstract

Summary This paper describes an investigation of the creep rupture strength (CRS) of 9Cr‐1Mo‐V‐Nb‐N steel welded joints by welding thermal cycle simulation. The reduction in the CRS of the welded joints is successfully reproduced, and the reasons for this reduction are discussed from the perspective of fine precipitates in the matrix. The CRS of the simulated HAZ (heat affected zone) varies with the peak temperature of welding thermal cycle simulation (PT). It falls sharply beyond the Ac1 temperature, gradually reaching the minimum at the Ac3 temperature of 925 °C. At any higher temperature than Ac3, it rises steadily, showing almost the same CRS as the base metal at 1100°C. The weakest CRS of the simulated HAZ lies at the lowest limit of the CRS data band of various welded joints prepared by GTA (TIG), MMA, and submerged‐arc (SA) welding with the same base metal. The simulated HAZ is useful for evaluation and analysis of the CRS reduction of welded joints. Heating to the Ac3 temperature by welding change...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.