Abstract

Flows around vortex generators (VGs), which serve as one of the important flow control methods, are investigated by solving Reynolds-averaged Navier-Stokes (RANS) equations. The influences on the main flow of VGs are intended to explore. Firstly, the flow around a single VG on a flat plane is computed to validate the schemes and to acquire basic knowledge of this kind of flow. Secondly, transonic flow past a standard model, named by ONERA-M6 wing, is predicted to investigate the flow features of shockwave/boundary-layer interactions (SWBLI). Thirdly, the effects of a row of VGs mounted about 25% local chord on a supercritical wing are analyzed in transonic condition with strong SWBLI. Lastly, VGs are mounted more upwind (about 3.5% local chord) to explore the effects at low speed and high incidence condition. The numerical results show that seven VGs can effectively suppress the separations behind the strong SWBLI and decrease spanwise flow and wing-tip vortex in transonic condition. VGs also can decrease the large scope of separation over the wing at low speed with high angle of attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.