Abstract

AbstractSamples of ascending geogas flow particles were collected on toSiNgrids directly in theQuaternary sediments overlying theDongshengmiao polymetallic pyrite deposit, China. Corresponding soil samples were collected in the surface ofDongshengmiao district at the same time. After pretreatment, theseSiNgrid samples were analyzed by transmission electron microscopy. The tests focused on the characteristics of particles including size, shape, chemical composition, structure and association. The results show that there are numerous carbon‐bearing particles in particulate samples of the ascending geogas flow. The particles contain organic matter, carbonate or carbonate mixed with other minerals. These carbon‐bearing particles generally contain metallic elements likeFe/Zn/Au/Cu/Pb. However, all of the soil particles do not contain elementalCand only consist of common elements (O,Na,Mg,Al,Si,Ca,Ti) just like the composition of earth crust. Through a comparison between the particles from different sources, the carbon‐bearing particles were found to come only from the deep earth and carried useful information about concealed deposits as they pass through the deep‐seated orebodies. Given the influences of organic matter on mineralization, the carbon‐bearing particle may provide information on the deposit genesis. Combining the use of geogas particle for prospecting with characteristics of large depth, and the carbon‐bearing materials' close spatial and genetic relationship with orebodies, we propose a new prospecting method based on the characteristics of carbon‐bearing particles, including morphology, size, chemical component and ultra‐microstructure. This approach could be applied to the exploration of deposits deep in the earth and abundant in carbon‐bearing matter. This approach can provide efficient and effective deposit exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.