Abstract
An experimental investigation of the flow structure induced by a chain of gas bubbles was carried out in a rectangular bubble column using particle image velocimetry (PIV). It is observed that the bubble rising trajectory changes from one dimension to three dimension as liquid viscosity reduces. The variation of bubble rising trajectory associates with the alternation of bubble motions—with or without oscillatory and rotational motion depending the bubble rising trajectory is 3-D or 1-D. The different behaviors of gas bubbles introduce various instantaneous and averaged liquid flow structures. In general, complex fluid velocity fields present in liquid system of low viscosity where free vortex, cross flow, and irregular circular flow can be observed. The liquid pseudo-turbulence measured in terms of turbulence intensity and Reynolds stress is more intense in liquid of low viscosity. The turbulence is also enhanced by the frequency of bubble formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.